CC2A7B1BA3B3F92FE8DEAAD627336)

contate seus signatários. (EBF98362AAFBCFF757D996724D95EDA6C7

F96 - RELATÓRIO DE ENSAIO Relatório Nº 3378a/2024

1. Dados do Cliente

Razão Social: Alumiconte Componentes de Aluminio Ltda

Endereço: Rua Conde de Porto Alegre, 1000 - Bairro Centro - Vila Flores/RS CEP: 95334-000

A/C: Lucas J. Mezadri

Código da Proposta/Pedido: 4572/2611

2. Objetivo

Analisar o desempenho de esquadria externa utilizada em edificação quanto aos requisitos de permeabilidade ao ar, estanqueidade à água, comportamento mecânico e ações de operação e manuseio, conforme prescrições da norma ABNT NBR 10821-3:2017.

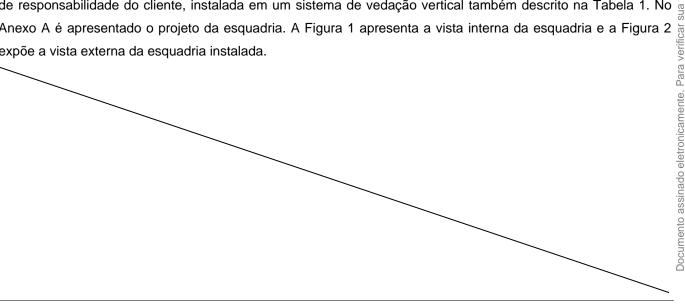
3. Responsáveis

Relatório de Ensaio autorizado por: Dr. Eng. Civil Bernardo Fonseca Tutikian

Responsável pelo Ensaio: Dr. Eng. Civil Roberto Christ Analista de Projetos: MSc. Eng. Hinoel Zamis Ehrenbring

Laboratoristas: Maria Luísa da Silva Marques e Giovana Poleto

4. Amostras para análise


A amostragem é responsabilidade do Cliente.

Data de Recebimento: 17/01/2020 Número(s) da(s) Amostra(s): ES111

Período de Realização do Ensaio: de 20/01/2020 a 30/01/2020

Local da realização das atividades do Ensaio: nas dependências permanentes do itt Performance (Unisinos).

A amostra consiste em uma esquadria, conforme descrito na Tabela 1, sendo a instalação da amostra realizada e de responsabilidade do cliente, instalada em um sistema de vedação vertical também descrito na Tabela 1. No Anexo A é apresentado o projeto da esquadria. A Figura 1 apresenta a vista interna da esquadria e a Figura 2 expõe a vista externa da esquadria instalada.

Página 1 de 14

Revisão: 04 (em 24/01/2020)

Tabela 1 - Composição construtiva da amostra

;	Sistema	Descrição
	Nomenclatura	Alumiconte Nostra Linha 25 - JCR 200 - Janela de correr 2 folhas com baguete
	Dimensões	1200 x 1200 mm
	Perfil/vedações	A composição da esquadria possui perfis simples (ACM 200) em ALUMÍNIO e pingadeira em granito. As escovas de vedação vertical têm dimensões 5 x 6 mm (entre folhas), 5 x 8 mm (entre marco e folha) e a escova de vedação horizontal é de 5 x 8 mm, ambas com barreira
Amostra	Drenos	A amostra possui 3 drenos (Ø6 mm) no trilho esquerdo e, no trilho direito possui 1 dreno (Ø6 mm)
AIIIOSIIa	Altura da aba interna do trilho	35 mm
	Vidro	Monolítico de 4 mm
	Persiana	Com persiana
	Fixação	Fixação mecânica entre o contramarco e o SVVE foi feita com o uso de chumbador do tipo cadeirinha, parafusos e argamassa cimentícia. A fixação entre marco e contramarco foi realizada por meio de parafusos. A interface entre o marco e o contramarco foi selada com silicone incolor.
Veda	ação vertical	Blocos cerâmicos de vedação de dimensões 14 x 19 x 29 cm com 8 furos horizontais com assentamento e revestimento de 1 cm de espessura com argamassa industrializada convencional e espessura total de 20 cm.

Figura 1 - Vista interna da esquadria instalada

Figura 2 – Vista externa da esquadria instalada

5. Métodos

5.1 Estanqueidade à água e permeabilidade ao ar, carga uniformemente distribuída e permeabilidade ao ar após ensaio de carga uniformemente distribuída

Os ensaios de permeabilidade ao ar e estanqueidade à água foram realizados no laboratório de estanqueidade nas dependências do itt Performance/Unisinos, seguindo as prescrições da norma ABNT NBR 10821-3:2017, items 5 e 6, respectivamente, utilizando-se de câmara de pressão e aspersão de água, projetada de acordo com as orientações nos Anexos A e B da referida norma (Figuras 3 e 4). A verificação às cargas uniformemente distribuídas seguiu as determinações da norma ABNT NBR 10821-3:2017, item 7, utilizando-se a mesma câmara do ensaio de estanqueidade à água. Os relógios comparadores, para medida das deformações, foram posicionados na face interna da esquadria (Figura 5), no montante vertical da folha em vidro, com comprimento de 960 mm, e montante

horizontal acima da folha móvel com comprimento de 1170 mm, considerando estas distâncias como o comprimento livre, como prescreve o Anexo C da ABNT NBR 10821-3:2017, conforme: D1 – na região superior do montante; D2 – no centro do montante; D3 – na região inferior do montante; D4 – na região esquerda do montante; 🖰 D5 – no centro do montante; D6 – na região direita do montante. Com a delimitação de 30 pavimentos e altura limite máxima de 90 metros obtidos na verificação da estanqueidade à água, dispõe-se os valores de pressão de vento estipulados pela ABNT NBR 10821-2:2017, para a região V do país. Caso a pressão de ensaio necessária 🐇 não seja atingida, conforme o item 7.2 Execução do ensaio (ABNT NBR 10821-3:2017), a norma permite selar o corpo de prova com um filme plástico que garanta aderência somente na área do corpo de prova, para a verificação $\stackrel{\circ}{\circ}$ seus signatários. (EBF98362AAFBCFF757D996724D95EDA6C77 do comportamento da esquadria quando submetida a cargas de segurança.

Figura 3 - Parte externa da câmara de ensaios

Figura 4 - Parte interna da câmara de ensaios

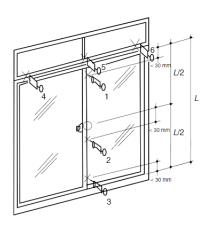
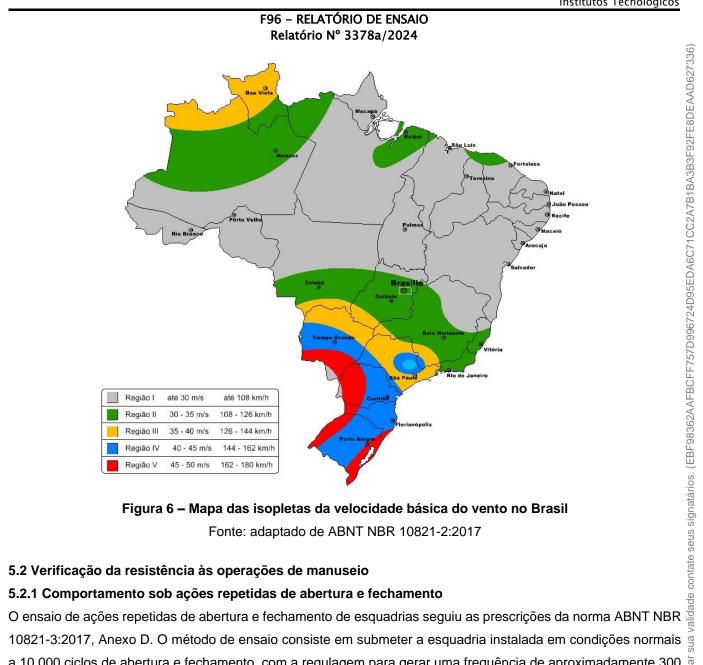


Figura 5 - Posicionamento dos relógios comparadores

Os requisitos para a classificação das esquadrias instaladas na posição vertical, em edifícios de caráter residencial ou comercial, são estabelecidos para cinco classes, número dos pavimentos e à altura da edificação. As pressões adotadas no ensaio estão especificadas na Figura 6 e Tabela 1 do item 6.1 Classificação da ABNT NBR 10821-2:2017 (Anexo B deste relatório), sendo sempre considerado o último pavimento da edificação onde as esquadrias Documento assinado eletronicamente. Para verificar estão instaladas, assim mantendo esse valor para todos os pavimentos, como descrito abaixo:

- a) Até dois pavimentos e altura máxima de 6 m;
- b) Até cinco pavimentos e altura máxima de 15 m;
- Até dez pavimentos e altura máxima de 30 m;
- Até vinte pavimentos e altura máxima de 60 m;
- e) Até trinta pavimentos e altura máxima de 90 m.


Página 3 de 14

Revisão: 04 (em 24/01/2020)

Fone: 51 3591 - 8887 - e-mail: ittperformance@unisinos.br

ERFORMANCE

F96 - RELATÓRIO DE ENSAIO Relatório Nº 3378a/2024

10821-3:2017, Anexo D. O método de ensaio consiste em submeter a esquadria instalada em condições normais g a 10.000 ciclos de abertura e fechamento, com a regulagem para gerar uma frequência de aproximadamente 300 💆 ciclos por hora. Antes da realização do ensaio, deve-se executar cinco ciclos completos de abertura e fechamento 😇 na esquadria, para a verificação da sua mobilidade. Deve-se ainda medir a carga necessária para abertura e fechamento no início e a cada 1000 ciclos, sendo que, para o fechamento, a carga para esta movimentação não pode superar 50 N e, para a abertura, 100 N.

5.2.2 Resistência ao esforço horizontal com um canto imobilizado

A execução deste ensaio segue as recomendações do Anexo G da norma ABNT NBR 10821-3:2017, o qual

determina a aplicação de uma força de 400 N paralela à folha interna da esquadria. A folha deve estar posicionada na metade do seu percurso de fechamento/abertura. A carga é aplicada no eixo do perfil da folha. De acordo com 💆 os critérios da norma, imobiliza-se um dos cantos da folha, restringindo sua movimentação. Posteriormente, é 🖔

mensurada, através de relógios comparadores, a deformação da folha da esquadria. A Figura 7 ilustra o processo de ensaio.



Figura 7 - Instrumentação de ensaio de resistência horizontal com um canto imobilizado

latários. (EBF98362AAFBCFF757D996724D95EDA6C71CC2A7B1BA3B3F92FE8DEAAD627336 Após a execução do ensaio, verifica-se o funcionamento da esquadria por meio de 5 ciclos de abertura e fechamento. Caso seja constatada alguma anomalia no seu processo de movimentação, deformações excessivas, ou que as cargas de abertura e/ou fechamento ultrapassaram, respectivamente, 100 N e 50 N, o sistema não estará de acordo com os critérios da norma ABNT NBR 10821:2017.

5.3 Manutenção da segurança durante os ensaios de resistência às operações de manuseio

5.3.1 Resistência ao esforço horizontal com dois cantos imobilizados

A execução deste ensaio segue as recomendações do Anexo I da norma ABNT NBR 10821-3:2017, a qual determina a aplicação de uma força de 400 N paralela à folha interna da esquadria. A folha deve estar posicionada na metade do seu percurso de fechamento/abertura. Tal carga é aplicada no eixo do perfil da folha. Diante dos 💆 critérios da normativa, imobilizam-se os dois cantos da folha, restringindo sua movimentação. A Figura 8 ilustra o processo de ensaio.

sua validade contate Documento assinado eletronicamente.

98362AAFBCFF757D996724D95EDA6C71CC2A7B1BA3B3F92FE8DEAAD627336)

seus signatários

Documento assinado eletronicamente. Para verificar

F96 - RELATÓRIO DE ENSAIO Relatório Nº 3378a/2024

Figura 8 - Instrumentação de ensaio de resistência horizontal com dois cantos imobilizados

Após a execução do ensaio, verifica-se o funcionamento da esquadria por meio de 5 ciclos de abertura e fechamento. Caso seja constatada alguma anomalia no seu processo de movimentação, deformações excessivas, 🖫 ou que as cargas de abertura e fechamento ultrapassaram, respectivamente, 100 N e 50 N, o sistema não estará de acordo com os critérios da norma ABNT NBR 10821:2017.

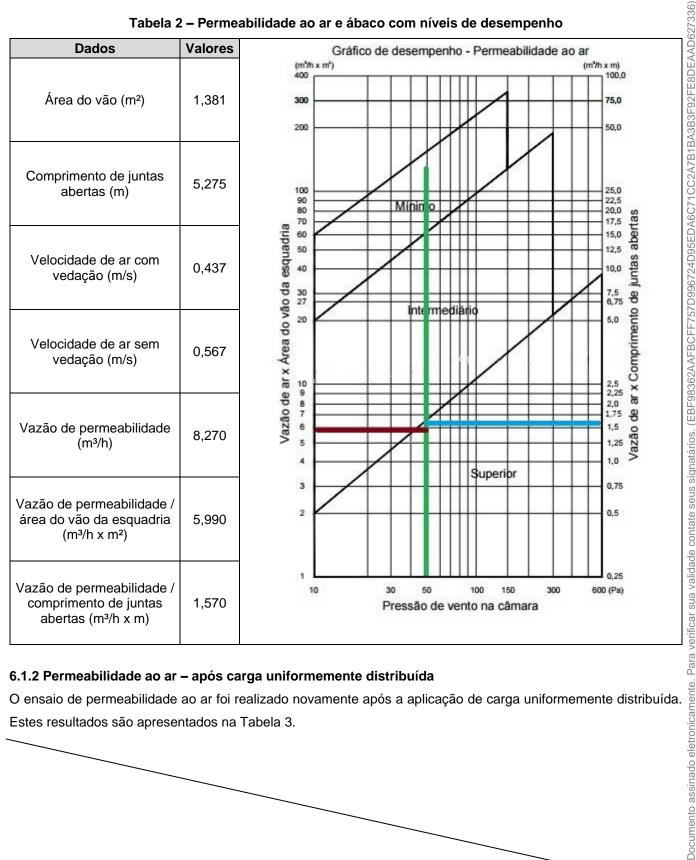
5.3.2 Resistência à flexão

O ensaio de resistência à flexão seguiu as prescrições da norma ABNT NBR 10821-3:2017, Anexo J. O método de ensaio consiste em submeter a esquadria instalada em condições normais, com a folha na posição intermediária 😃 entre o percurso de abertura e fechamento, a um esforço de 400 N perpendicular ao plano da folha, no sentido do 🗟 interior para o exterior e vice-versa. Para o ensaio de fora para dentro, utiliza-se a folha interna. Já na folha externa, 💆 aplicam-se os esforços no sentido de dentro para fora.

6. Resultados

6.1 Permeabilidade ao ar

6.1.1 Permeabilidade ao ar- inicial


A vazão de ar passante pela esquadria, em metros cúbicos por hora, quando está submetida a uma pressão de 50 Pa, juntamente com as demais informações necessárias para a classificação, estão apresentadas na Tabela 2.

Página 6 de 14

Revisão: 04 (em 24/01/2020)

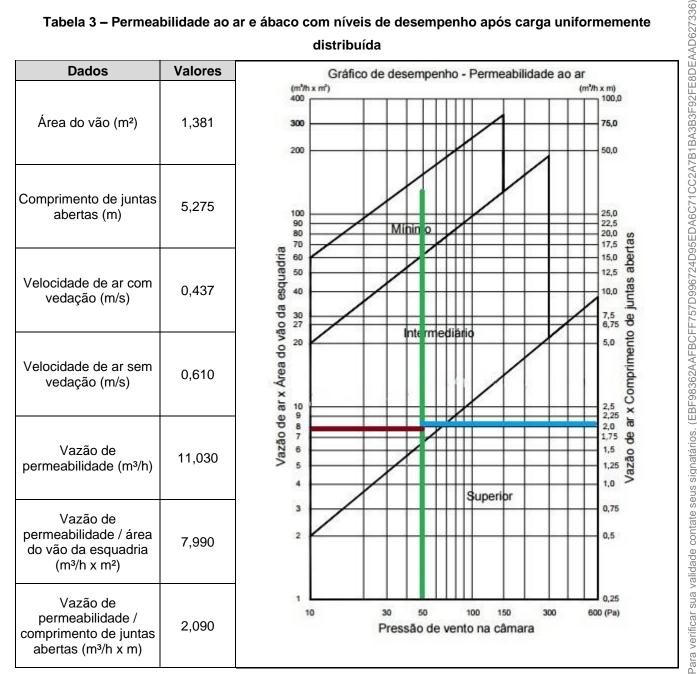


Tabela 2 - Permeabilidade ao ar e ábaco com níveis de desempenho

6.1.2 Permeabilidade ao ar - após carga uniformemente distribuída

O ensaio de permeabilidade ao ar foi realizado novamente após a aplicação de carga uniformemente distribuída. Estes resultados são apresentados na Tabela 3.

Página 7 de 14


Revisão: 04 (em 24/01/2020)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3591 - 8887 - e-mail: ittperformance@unisinos.br

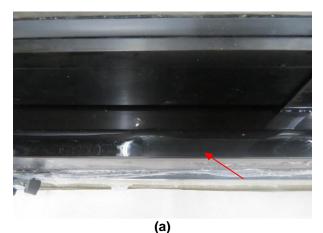
Tabela 3 – Permeabilidade ao ar e ábaco com níveis de desempenho após carga uniformemente distribuída

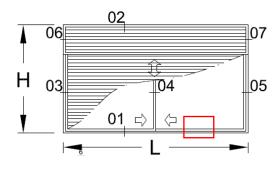
6.2 Estanqueidade à água

A pressão aplicada no ensaio de estanqueidade à água foi progressiva e até o valor de 300 Pa, observando a presença de água no perfil inferior aos 2 minutos de ensaio e a ocorrência de Permeabilidade Inicial (PI) aos 14 minutos em 190 Pa. Os resultados verificados constam na Tabela 4.

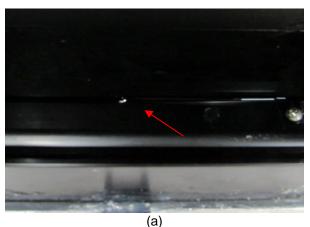
Página 8 de 14

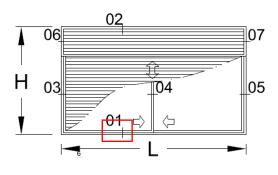
Revisão: 04 (em 24/01/2020)


Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4


Fone: 51 3591 - 8887 - e-mail: ittperformance@unisinos.br

Documento assinado eletronicamente.


Tabela 4 - Resultados verificados no ensaio de estanqueidade à água


Pressão de ensaio (Pa)	Observações
0	Presença de água no trilho – 2min42s – Lâmina d'água de 3 mm. (ver Figura 9).
20	Nenhuma ocorrência observada. Lâmina d'água de 3 mm.
40	Nenhuma ocorrência observada. Lâmina d'água de 4 mm.
60	Nenhuma ocorrência observada. Lâmina d'água de 4 mm.
80	Nenhuma ocorrência observada. Lâmina d'água de 5 mm.
100	Nenhuma ocorrência observada. Lâmina d'água de 5 mm.
130	Nenhuma ocorrência observada. Lâmina d'água de 11 mm.
160	Nenhuma ocorrência observada. Lâmina d'água de 15 mm.
190	Nenhuma ocorrência observada. Lâmina d'água de 16 mm.
220	Nenhuma ocorrência observada. Lâmina d'água de 16 mm.
250	Nenhuma ocorrência observada – Lâmina d'água de 23 mm.
280	Nenhuma ocorrência observada – Lâmina d'água de 23 mm.
300	Ocorrência de PI (ver Figura 10) – 18s após aplicação da pressão – Lâmina de água de 26 mm.

(b) Figura 9 - (a) Indicação da presença de água no trilho e (b) localização do ponto de vazamento

(b)

Figura 10 - (a) Indicação da ocorrência de Permeabilidade Inicial (PI) em 300 Pa na esquadria e (b) localização do ponto de PI

Página 9 de 14

Revisão: 04 (em 24/01/2020)

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (EBF98362AAFBCFF757D996724D95EDA6C71CC2A7B1BA3B3F92FEBDEAAD627336)

6.3 Comportamento mecânico

6.3.1 Comportamento sob cargas uniformemente distribuídas (deformação)

Tabela 5 - Deformação obtida no ensaio de pressão positiva

3 Comporta	amento me	CGarrico						
3.1 Compo	rtamento s	sob cargas	uniformen	nente distri	ibuídas (de	formação)		
Tabela 5	anresenta	os resulta	idos de de	eformação	obtidos no	ensaio d	e pressão posit	iva sob carda
ifarma ana ana	ماندهانده	do resulte	idos de de	nonnagao	obtidos 110	Cribaio d	o pressuo posit	iva oob oarga
illormemeni	te distribuit	ias.						
		Tabela 5 –	Deformaçã	io obtida n	o ensaio d	e pressão	positiva	
			Deforma	ção (mm)	_		Deformação	o real (mm)
Pressão (Pa)	D1	D2	D3	D4	D5	D6	$D_a max = D5$ - $(D4 + D6) /$ 2	$D_b max = D2$ - [(D1 - D5) + D3] / 2
546	2,36	2,69	0,84	0,16	0,41	0,14	0,26	1,30
Residual	0,01	0,03	0,06	0,01	0,00	0,00	0,00	0,00
1092	3,54	4,48	1,32	0,31	0,79	0,30	0,48	2,44
Residual	0,01	0,05	0,09	0,01	0,00	0,01	0,00	0,00
1820	5,51	7,29	2,15	0,65	1,46	0,65	0,81	4,20
Residual	0,17	0,14	0,10	0,04	0,05	0,05	0,00	0,02
		Deformação	máxima a	oresentada			4,2	20
	Deformação	máxima, p	ermitida pel	a ABNT NE	3R 10821-2		5,4	49
	Defo	rmação res	idual máxim	na apresent	ada		0,0	02
Defor	rmação má	xima residu	al, permitida	a pela ABN	T NBR 1082	21-2	3 8	84
niformement	apresenta te distribuío	os resulta das. Tabela 6 –	dos de de	formação d	obtidos no	ensaio de e pressão i	pressão negat	iva sob carga
niformement	apresenta te distribuío	os resulta das. Tabela 6 –	dos de de Deformaçã Deforma	formação do obtida no cão (mm)	obtidos no	ensaio de e pressão I	pressão negativa Deformação	o real (mm)
Pressão (Pa)	apresenta te distribuío D1	os resulta das. Tabela 6 –	Deformaçã Deformac D3	formação do obtida no case (mm)	obtidos no o ensaio de	ensaio de pressão i	pressão negativa Deformação Damax = D5 - (D4 + D6) /	o real (mm) D _b max = D2 - [(D1 - D5) + D31/2
Pressão (Pa)	apresenta te distribuío D1 1,34	os resultadas. Tabela 6 – D2 1,93	Deformaçã Deforma D3 0,78	formação do obtida no case (mm) D4 0,14	o ensaio de D5 0,34	ensaio de pressão I D6 0,12	pressão negativa Deformação Damax = D5 - (D4 + D6)/ 2 0,21	o real (mm) D _b max = D2 - [(D1 - D5) + D3] / 2 1,04
Pressão (Pa) -546 Residual	D1 1,34 0,00	os resultadas. Tabela 6 – D2 1,93 0,00	Deformaçã Deformaçã 0,78 0,00	formação o obtida no case (mm) D4 0,14 0,00	obtidos no o ensaio de D5 0,34 0,00	ensaio de pressão D6	pressão negativa Deformação Damax = D5 - (D4 + D6) / 2 0,21 0,00	o real (mm) D _b max = D2 - [(D1 - D5) + D3] / 2 1,04 0,00
Pressão (Pa) -546 Residual -1092	D1 1,34 0,00 2,79	os resultadas. Tabela 6 – D2 1,93 0,00 3,96	Deformaçã Deformac D3 0,78 0,00 1,57	formação o obtida no case (mm) D4 0,14 0,00 0,31	D5 0,34 0,00 0,77	ensaio de pressão I D6 0,12 0,00 0,28	pressão negativa Deformação Damax = D5 - (D4 + D6) / 2 0,21 0,00 0,48	o real (mm) D _b max = D2 - [(D1 - D5) + D3]/2 1,04 0,00 2,16
Pressão (Pa) -546 Residual -1092 Residual	D1 1,34 0,00 2,79 0,00	os resultadas. Tabela 6 – D2 1,93 0,00 3,96 0,02	Deformaçã Deforma D3 0,78 0,00 1,57 0,04	formação (o obtida no case (mm) D4 0,14 0,00 0,31 0,00	D5 0,34 0,00 0,77 0,00	Pressão I D6 0,12 0,00 0,28 0,00	pressão negativa Deformação Damax = D5 - (D4 + D6) / 2 0,21 0,00 0,48 0,00	o real (mm) D _b max = D2 - [(D1 - D5) + D3] / 2 1,04 0,00 2,16 0,00
Pressão (Pa) -546 Residual -1092 Residual -1820	D1 1,34 0,00 2,79 0,00 6,67	os resultadas. Tabela 6 - D2 1,93 0,00 3,96 0,02 8,61	Deformaçã Deformac D3 0,78 0,00 1,57 0,04 2,86	formação (fo obtida no case (mm) D4 0,14 0,00 0,31 0,00 0,80	D5 0,34 0,00 0,77 0,00 1,91	Pressão I D6 0,12 0,00 0,28 0,00 0,78	pressão negativa Deformação Damax = D5 - (D4 + D6) / 2 0,21 0,00 0,48 0,00 1,12	o real (mm) Dbmax = D2 - [(D1 - D5) + D3]/2 1,04 0,00 2,16 0,00 4,80
Pressão (Pa) -546 Residual -1092 Residual -1820 Residual	D1 1,34 0,00 2,79 0,00 6,67 0,20	os resultadas. Tabela 6 – D2 1,93 0,00 3,96 0,02 8,61 0,13	Deformaçã Deformac D3 0,78 0,00 1,57 0,04 2,86 0,08	formação o o obtida no case (mm) D4 0,14 0,00 0,31 0,00 0,80 0,04	D5 0,34 0,00 0,77 0,00 1,91 0,07	Pressão III D6 0,12 0,00 0,28 0,00 0,78 0,05	pressão negativa Deformação Damax = D5 - (D4 + D6) / 2 0,21 0,00 0,48 0,00 1,12 0,02	o real (mm) D _b max = D2 - [(D1 - D5) + D3] / 2 1,04 0,00 2,16 0,00 4,80 0,03
Pressão (Pa) -546 Residual -1092 Residual -1820 Residual	D1 1,34 0,00 2,79 0,00 6,67 0,20	os resultadas. Tabela 6 – D2 1,93 0,00 3,96 0,02 8,61 0,13 Deformação	Deformaçã Deformaçã 0,78 0,00 1,57 0,04 2,86 0,08 máxima ap	formação (no obtida no capacida (mm) D4 0,14 0,00 0,31 0,00 0,80 0,04 presentada	D5 0,34 0,00 0,77 0,00 1,91 0,07	Pressão IIII		o real (mm) D₀max = D2 - [(D1 - D5) + D3] / 2 1,04 0,00 2,16 0,00 4,80 0,03
		os resulta das. Tabela 6 – D2 1,93 0,00 3,96 0,02 8,61 0,13 Deformação máxima, p	maxima ap	presentada		Pressão IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	4,8	o real (mm) Dbmax = D2 - [(D1 - D5) + D3] / 2 1,04 0,00 2,16 0,00 4,80 0,03 80 49
	Deformação	Deformaçac	o maxima ap ermitida pel	oresentada a ABNT NE	3R 10821-2	Pressão III D6 0,12 0,00 0,28 0,00 0,78 0,05	4,i 5,	80
С	Deformação Defo	Deformaçao o máxima, p	o maxima ap ermitida pel idual máxim	oresentada a ABNT NE na apresent	BR 10821-2 ada		4,i 5,i 0,i	80 49
Defor	Deformação Defo rmação má	Deformaçao o máxima, p ormação res	o maxima ap ermitida pel idual máxim al, permitida	oresentada a ABNT NE na apresent a pela ABN	BR 10821-2 ada		4,i 5,i 0,i	80 49 03
Defor 3.2 Compo	Deformação Defo mação má	Deformação o máxima, p ormação res xima residu sob pressã	o maxima ap ermitida pel idual máxim al, permitida o de segur	presentada la ABNT NE na apresent la pela ABN ⁻ ança	BR 10821-2 ada T NBR 1082	21-2	4,i 5,i 0,i	80 49 03 84
Defor 3.2 Compo Tabela 7 a	Deformação Defo mação má rtamento s	Deformação o máxima, p ormação res xima residu sob pressã	o maxima apermitida pelidual máximal, permitida o de segur de possíve	oresentada la ABNT NE na apresent la pela ABN ^T ança eis falhas v	BR 10821-2 ada T NBR 1082 isuais obtid	21-2	4,i 5,i 0,i	80 49 03 84
Defor 3.2 Compo Tabela 7 a	Deformação Defo mação má rtamento s	Deformação o máxima, pormação res xima residu sob pressão s resultados cargas uniformação uniformação de máxima resultados cargas uniformação de máxima resultados cargas uniformação de máxima resultados de máxima result	o maxima apermitida pelidual máximal, permitida o de segur s de possívormemente	oresentada la ABNT NE na apresent la pela ABNT ança eis falhas v distribuídas	BR 10821-2 ada T NBR 1082 isuais obtid	21-2 os para a p	4,; 5,, 0,(3,; oressão de segui	80 49 03 84
Defor 3.2 Compo Tabela 7 a	Deformação Defo mação má intamento s presenta o gativa, sob	Deformação o máxima, p ormação res xima residu sob pressã s resultados cargas unifo	o maxima apermitida pelidual máximal, permitida o de segur s de possívormemente	oresentada la ABNT NE na apresent la pela ABNT ança eis falhas v distribuídas	BR 10821-2 ada T NBR 1082 isuais obtid	21-2 os para a p nte o ensa	4,; 5,, 0,(3,; oressão de segui	80 49 03 84
Defor 3.2 Compo Tabela 7 apositiva e neg	Deformação Deformação má Intamento s presenta or gativa, sob	Deformação o máxima, p ormação res xima residu sob pressã s resultados cargas unifo Tabe	o maxima apermitida pelidual máximal, permitida o de segur s de possíve ormemente	oresentada la ABNT NE na apresent la pela ABNT ança eis falhas v distribuídas	BR 10821-2 ada T NBR 1082 isuais obtid s. falhas dura	21-2 os para a p nte o ensa	oressão de segui	80 49 03 84 rança (2730 Pa
Defor 3.2 Compo Tabela 7 apositiva e neg	Deformação Deformação má Intamento s presenta or gativa, sob	Deformação o máxima, p ormação res xima residu sob pressã s resultados cargas unifo Tabe	o maxima apermitida pelidual máximal, permitida o de segur s de possívormemente ela 7 – Ocor	oresentada la ABNT NE na apresent la pela ABNT ança eis falhas v distribuídas	BR 10821-2 ada T NBR 1082 isuais obtid s. falhas dura	21-2 os para a p nte o ensa	4,; 5,, 0,1 3,; oressão de segui	80 49 03 84 rança (2730 Pa

Tabela 6 - Deformação obtida no ensaio de pressão negativa

			Deformaçã	o real (mm)					
Pressão (Pa)	D1	D2	D3	D4	D5	D6	$D_a max = D5$ - $(D4 + D6) /$ 2	$D_b max = D2$ - [(D1 - D5) + D3]/2	
-546	1,34	1,93	0,78	0,14	0,34	0,12	0,21	1,04	
Residual	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
-1092	2,79	3,96	1,57	0,31	0,77	0,28	0,48	2,16	
Residual	0,00	0,02	0,04	0,00	0,00	0,00	0,00	0,00	
-1820	6,67	8,61	2,86	0,80	1,91	0,78	1,12	4,80	
Residual	0,20	0,13	0,08	0,04	0,07	0,05	0,02	0,03	
		Deformação	máxima a	oresentada			4,80		
I	Deformação	máxima, p	ermitida pel	a ABNT NB	R 10821-2		5,49		
	Defo	rmação res	idual máxim	na apresent	ada		0,	03	
Defo	rmação má	xima residu	al, permitida	a pela ABN	Γ NBR 1082	21-2	3,	84	

6.3.2 Comportamento sob pressão de segurança

Tabela 7 - Ocorrência de falhas durante o ensaio

Pressão	Aplicação	Ocorrência		
Positiva	1º positiva	Nenhuma ocorrência de falhas		
Positiva	2º positiva	Neminuma ocorrencia de famas		
Monotivo	1º negativa	Nonhuma coerrância de felhas		
Negativa	2º negativa	Nenhuma ocorrência de falhas		

Página 10 de 14

Revisão: 04 (em 24/01/2020)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3591 - 8887 - e-mail: ittperformance@unisinos.br

6.3.3 Comportamento sob ações repetidas de abertura e fechamento										
O valor dos esforços necessários para a movimentação de abertura e fechamento, registrados a cada 1.000 ciclos,										
expresso através o	da Tabela	8.								
Tabela 8 – Resultados verificados no ensaio										
Ciclo	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000
- 1 (A1)	16	15	15	15	16	17	14	17	17	18
Fechamento (N)		Abertura (N) 19 16 15 20 23 22 24 24 24 25 5								

Após o término do ensaio de ciclo de abertura e fechamento, realizou-se inspeção visual e foi verificado que os 🖔										
elementos da esquadria não apresentaram desgaste ou demais avarias que prejudicassem seu funcionamento. As 💆										
cargas mantiveram-se abaixo de 50 N para fechamento e 100 N para abertura.										
D955										
6.3.4 Resistência	horizonta	al com ui	n canto i	mobilizado						
Os valores das def	ormações	máxima	s e residu	ais encontrados durante o ensaio estão expressos na Tabela 9.						
Tabela 9 – Carga horizontal com um canto imobilizado										
Carda	D1	para de la comitación de la contraction de la co								
Carga [N]	D1 [mm]	[mm]	[mm]							
				fazendo com que sistema se mantivesse íntegro. O esforço horizontal aplicado não prejudicou o funcionamento da						
[N]	[mm]	[mm]	[mm]	fazendo com que sistema se mantivesse íntegro. O esforço						
[N] 0	[mm]	[mm]	[mm] 0,0	fazendo com que sistema se mantivesse íntegro. O esforço horizontal aplicado não prejudicou o funcionamento da						

Conforme a norma ABNT NBR 10821-2:2017, para esse caso, a deformação residual limite é de até 4,1 mm, ou 💆 seja, 0,40% em função do comprimento livre do perfil analisado (1020 mm). O funcionamento da esquadria não foi afetado quando submetida ao ciclo de abertura e fechamento.

Após a execução do ensaio de resistência horizontal com dois cantos imobilizados, foi constatada baixa deformação no perfil solicitado sem proporcionar danos ao elementa.

	ia nonzontal com dois cantos imobilizados								
Após a execução do ensaio de resistência horizontal com dois cantos imobilizados, foi constatada baixa									
deformação no	perfil solicitado sem proporcionar danos ao elemento. Após o descarregamento, o perfil manteve								
se íntegro e não	houve características que prejudicassem o funcionamento de abertura e fechamento, respeitando								
os limites de ca	rga estipulados pela ABNT NBR 10821-3:2017.								
6.3.6 Resistêne	ia à flexão								
O registro de ev	rentuais falhas na esquadria e comportamento de abertura e fechamento constam na Tabela 10.								
	Tabela 10 – Resistência à flexão								
Carga [N]	Folha interna (aplicação de carga de fora para dentro)								
0	Canatatou ao defermenão de perfil com o corregemente de 400 N. tedavia não bouve								
400	Constatou-se deformação do perfil com o carregamento de 400 N, todavia não houve comprometimento na abertura e fechamento da esquadria.								
0	compromountementa abortara o recinamento da coquadina.								
Carga [N]	Folha externa (aplicação de carga de dentro para fora)								
_									
0	Constatou-se deformação do perfil com o carregamento de 400 N todavia não houve								
400	Constatou-se deformação do perfil com o carregamento de 400 N, todavia não houve comprometimento na abertura e fechamento da esquadria.								

Página 11 de 14

Revisão: 04 (em 24/01/2020)

Não foram constatadas falhas pontuais na esquadria. Em nenhuma das folhas ensaiadas, as cargas de abertura e fechamento, respectivamente, 100 N e 50 N, foram superadas, evidenciando o funcionamento normal do sistema. A Figura 11 apresenta o comportamento da folha interna da esquadria com carregamento de 400 N, e a Figura 12 apresenta o comportamento da folha externa da esquadria com carregamento de 400 N.

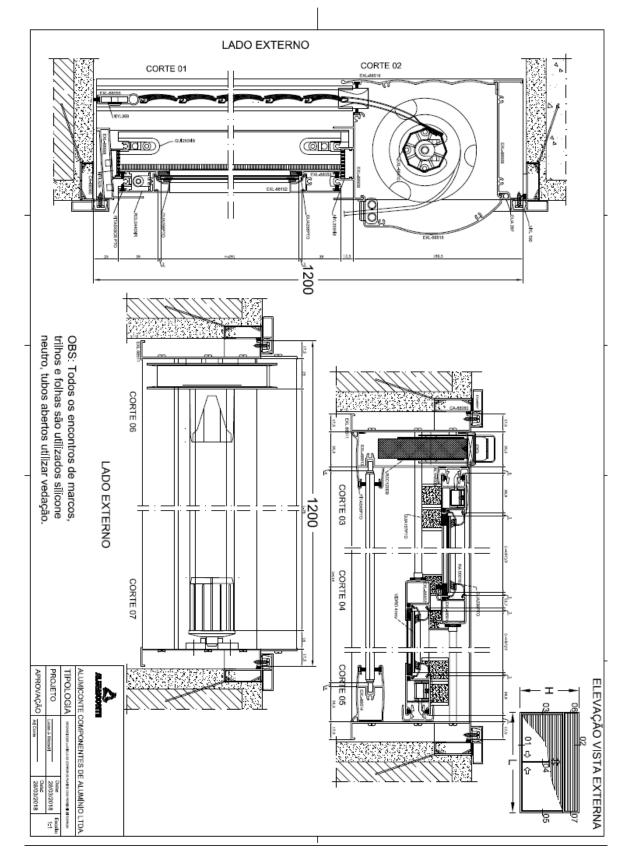
Figura 11 – Comportamento da folha interna da esquadria (400 N)

Figura 12 – Comportamento da folha externa da esquadria (400 N)

Observações

- OS RESULTADOS APRESENTADOS NESTE RELATÓRIO REFEREM-SE SOMENTE AOS ITENS ENSAIADOS.
- CONTENDO 16 PÁGINAS, O PRESENTE RELATÓRIO TÉCNICO FOI ELABORADO PELA EQUIPE TÉCNICA DO itt
 Performance/UNISINOS E OS RESULTADOS AQUI APRESENTADOS NÃO PODEM SER UTILIZADOS INDISCRIMINADAMENTE,
 SENDO VÁLIDOS SOMENTE NO ÂMBITO DESTE DOCUMENTO, SENDO VEDADA SUA REPRODUÇÃO PARCIAL. A
 GENERALIZAÇÃO DOS RESULTADOS PARA QUALQUER LOTE/UNIVERSO SERÁ DE RESPONSABILIDADE DO CLIENTE.
- O LABORATÓRIO NÃO FOI RESPONSÁVEL PELA AMOSTRAGEM DO(S) ITEM(NS) ENSAIADO(S), E OS RESULTADOS SE APLICAM A AMOSTRA CONFORME RECEBIDA.
- ESTE RELATÓRIO SUBSTITUI O RELATÓRIO DE Nº3378/2020. ALTERAÇÃO NA NOMENCLATURA DA ESQUADRIA.
 ACRÉSCIMO DO ITEM "9" NO RELATÓRIO.

9. Responsáveis pelo relatório


Nome do responsável	Função
Dr. Eng. Civil Roberto Christ	Responsável Técnico
	CRÉA RS nº 182890
Dr. Eng. Civil Hinoel Zamis Ehrenbring	Engenheiro Civil
Dir Erigi Givii i iirigar Earing Eringilaring	CREA RS nº 216147

Emitido em 22 de março de 2024.

página 12 de 16

Anexo A - Projeto da amostra

Página 13 de 14

Revisão: 04 (em 24/01/2020)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3591 - 8887 - e-mail: ittperformance@unisinos.br

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (EBF98362AAFBCFF757D996724D95EDA6C71CC2A7B1BA3B3F92FE8DEAAD627336)

Anexo B - Tabela de classificação (ABNT NBR 10821-2:2017)

Tabela B.1 – Valores de pressão de vento conforme a região do país e o número de pavimentos da edificação

Quantidade de pavimentos	Altura máxima	Região do país	Pressão de ensaios (Pe) positiva e negativa $Pe = Pp \times 1,2$	Pressão de segurança (Ps) positiva e negativa $Ps = Pe \times 1,5$	Pressão de água (Pa) $Pa = Pp \times 0.20$
		I	350	520	60
		II	470	700	80
2	6 m	III	610	920	100
		IV	770	1 160	130
		V	950	1 430	160
		I	420	640	70
		II	580	860	100
5	15 m	III	750	1130	130
		IV	950	1 430	160
		V	1 180	1 760	200
		I	500	750	80
		II	680	1 030	110
10	30 m	III	890	1 340	150
		IV	1 130	1 700	190
		V	1 400	2090	230
		I	600	900	100
		II	815	1 220	140
20	60 m	III	1 060	1 600	180
		IV	1 350	2 020	220
		V	1 660	2 500	280
		I	660	980	110
		II	890	1 340	150
30	90 m	III	1 170	1 750	200
		IV	1 480	2 210	250
		V	1 820	2 730	300

Final do Relatório - Recomendam-se cuidados para publicação destes resultados e, quando necessário esta publicação, o relatório deve ser reproduzido na íntegra. Reprodução em partes requer aprovação escrita do laboratório.

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (EBF98362AAFBCFF757D996724D95EDA6C71CC2A7B1BA3B3F92FE8DEAAD627336)

PROTOCOLO DE AÇÕES

Este é um documento assinado eletronicamente pelas partes, utilizando métodos de autenticações eletrônicas que comprovam a autoria e garantem a integridade do documento em forma eletrônica. Esta forma de assinatura foi admitida pelas partes como válida e deve ser aceito pela pessoa a quem o documento for apresentado. Todo documento assinado eletronicamente possui admissibilidade e validade legal garantida pela Medida Provisória nº 2.200-2 de 24/08/2001.

Data de emissão do Protocolo: 23/03/2024

Dados do Documento

Tipo de Documento Laudo técnico Referência Contrato RT Perf 3378 Situação Vigente / Ativo Data da Criação 23/03/2024

Validade 23/03/2024 até Indeterminado

Hash Code do Documento EBF98362AAFBCFF757D996724D95EDA6C71CC2A7B1BA3B3F92FE8DEAAD627336

Assinaturas / Aprovações

Papel (parte) Responsável

Relacionamento 92.959.006/0008-85 - UNISINOS

Roberto Christ 004.127.370-27

Assinado em 23/03/2024 08:55:11 - Forma de assinatura: Usuário + Ação: 2804:10c4:a7a0:636c:f147:bb71:eb01:c013

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Info.Navegador

Safari/537.36

Localização Não Informada

Tipo de Acesso Normal

Representante

020.791.930-58 **Hinoel Zamis Ehrenbring**

Assinado em 23/03/2024 08:54:45 - Forma de assinatura: Usuário + Ação: **IP:** 2804:10c4:a7a0:636c:f147:bb71:eb01:c013

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Info.Navegador Safari/537.36

Localização Não Informada

Tipo de Acesso Normal

Os serviços de assinatura digital deste portal contam com a garantia e confiabilidade da AR-QualiSign, Autoridade de Registro vinculada à ICP-Brasil.

Validação de documento não armazenado no Portal QualiSign

Caso o documento já tenha sido excluído do Portal QualiSign, a verificação poderá ser feita conforme a seguir;

a.) Documentos assinados exclusivamente com Certificado Digital (CADES)

A verificação poderá ser realizada em

https://www.qualisign.com.br/portal/dc-validar, desde que você esteja de posse do documento original e do arquivo que contém as assinaturas (.P7S). Você também poderá fazer a validação no site do ITI – Instituto Nacional de Tecnologia da Informação através do endereço https://verificador.iti.gov.br/

b.) Documentos assinados exclusivamente com Certificado Digital (PADES)

Para documentos no formato PDF, cuja opção de assinatura tenha sido assinaturas autocontidas (PADES), a verificação poderá ser feita a partir do documento original (assinado), utilizando o Adobe Reader. Você também poderá fazer a validação no site do ITI – Instituto Nacional de Tecnologia da Informação através do endereço https://verificador.iti.gov.br/

c.) Documentos assinados exclusivamente SEM Certificado Digital ou de forma híbrida (Assinaturas COM Certificado Digital e SEM Certificado Digital, no mesmo documento)

Para documento híbrido, as assinaturas realizadas COM Certificado Digital poderão ser verificadas conforme descrito em (a) ou (b), conforme o tipo de assinatura do documento (CADES ou PADES).

A validade das assinaturas SEM Certificado Digital é garantida por este documento, assinado e certificado pela QualiSign.

Validade das Assinaturas Digitais e Eletrônicas

No âmbito legal brasileiro e em também em alguns países do Mercosul que já assinaram os acordos bilaterais, as assinaturas contidas neste documento cumprem, plenamente, os requisitos exigidos na Medida Provisória 2.200-2 de 24/08/2001, que instituiu a Infraestrutura de Chaves Públicas Brasileira - ICP-Brasil e transformou o ITI – Instituto Nacional de Tecnologia da Informação em autarquia garantidora da autenticidade, integridade, não-repúdio e irretroatividade, em relação aos signatários, nas declarações constantes nos documentos eletrônicos assinados, como segue:

- Art. 10. Consideram-se documentos públicos ou particulares, para todos os fins legais, os documentos eletrônicos de que trata esta Medida Provisória.
- § 1º. As declarações constantes dos documentos em forma eletrônica produzidos com a utilização de processo de certificação disponibilizado pela ICP-Brasil presumem-se verdadeiros em relação aos signatários, na forma do art. 131 da Lei no 3.071, de 1o de janeiro de 1916 Código Civil.
- § 2º. O disposto nesta Medida Provisória não obsta a utilização de outro meio de comprovação da autoria e integridade de documentos em forma eletrônica, inclusive os que utilizem certificados não emitidos pela ICP-Brasil, desde que admitido pelas partes como válido ou aceito pela pessoa a quem for oposto o documento.

Pelo exposto, o presente documento encontra-se devidamente assinado pelas Partes, mantendo plena validade legal e eficácia jurídica perante terceiros, em juízo ou fora dele.