

F96 - RELATÓRIO DE ENSAIO
Relatório Nº 5962/2024

1. Dados do Cliente
Razão Social: Alumiconte Componentes de Aluminio EIRELI
Endereço: Rua Conde de Porto Alegre, 1000 - Bairro: Centro - Vila Flores/RS - CEP: 95334-000

A/C: Lucas Júnio Mezadri
Código da Proposta/Pedido: 10525/6881

2. Objetivo
Determinar o desempenho da esquadria externa utilizada em edificação descrita no item 4 quanto aos requisitos de ações de operação e manuseio, conforme ABNT NBR 10821-3:2017.

3. Responsávels
Relatório de Ensaio autorizado por: Dr. Eng. Civil Roberto Christ
Responsável pelo Ensaio: Dr. Eng. Civil Hinoel Zamis Ehrenbring
Analista de Projetos: Dr. Arq. E Urb. Josiane Reschke Pires
Laboratoristas: Alimée Christine Neis e Thomas Araujo Azevedo

4. Amostras para análise
A amostragem é responsabilidade do Cliente.
Data de Recebimento: 25/09/2023

Número da Amostra: 13121
Período de Realização dos Ensaio: 31/01/24 e 01/02/24
Local da realização dos Ensaios: astalaçãos instalações permanentes do itt Performance (Unisinos)

O corpo de prova consiste em uma esquadria Maxim-ar, descrita na Tabela 1, conforme informações fornecidas pelo contratante, sendo ele também responsável pela sua instalação. A instalação foi feita em um sistema de vedação vertical, também descrito na Tabela 1. No Anexo A é apresentado o projeto da esquadria. A Figura 1 apresenta a vista interna e externa da esquadria instalada.

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-MECJANMAX(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

PERFORMANCE

F96 - RELATÓRIO DE ENSAIO Relatório Nº 5962/2024

Tabela 1 - Composição construtiva da amostra

Sistema		Descrição				
	Nomenclatura	Janela Maxim-ar				
	Dimensões	Altura do marco: 800 mm - Largura do marco: 800 mm; Altura da folha: 760 mm - Largura da folha: 778 mm				
Amostra	Perfil/vedações	Marco simples e perfis de alumínio Liga 6063 T6. Os componentes utilizados para vedação entre folha/trilho/marco são: fita de EPDM para vedação entre folha/trilho/marco, conforme descrição inicial fornecido pelo contratante.				
	Vidro	Laminado 3+3 mm				
	Fixação	A fixação mecânica entre contramarco e o SVVE foi realizada com uso de chumbador do tipo cadeirinha. A fixação entre marco e contramarco foi realizada por meio de parafusos. As interfaces entre o contramarco e o SVVE, e entre o marco e contramarco, foram seladas com argamassa e silicone preto, respectivamente				
Vedação vertical		Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestimento interno e externo em argamassa industrializada convencional e espessura total de 2,5 cm em ambas as faces.				

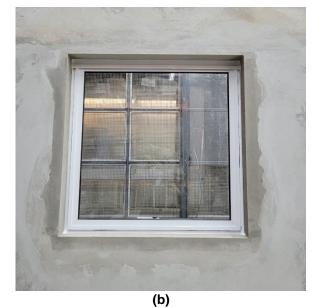
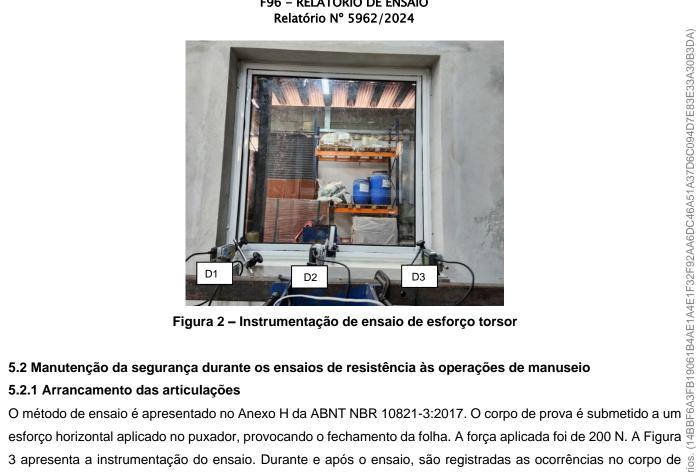


Figura 1 - Vista da esquadria instalada: (a) interna, e (b) externa

5. Métodos

5.1 Verificação da resistência às operações de manuseio

5.1.1 Resistência ao esforço torsor


Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (14BBF6A3FB19061B4AE1A4E1F32F92AA6DC46A51A37D6C094D7E83E33A30B3DA) O método do ensaio é apresentado no Anexo E da ABNT NBR 10821-3:2017. A folha do corpo de prova tem um de seus cantos imobilizado e submetida a um esforço torsor. A aplicação da força perpendicular de 250 N é feita no centro geométrico do montante inferior da folha da janela. São medidos os deslocamentos da folha em três pontos. A Figura 2 ilustra a instrumentação do ensaio.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-MECJANMAX(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

3 apresenta a instrumentação do ensaio. Durante e após o ensaio, são registradas as ocorrências no corpo de prova.

Figura 3 - Instrumentação do ensaio de arrancamento das articulações

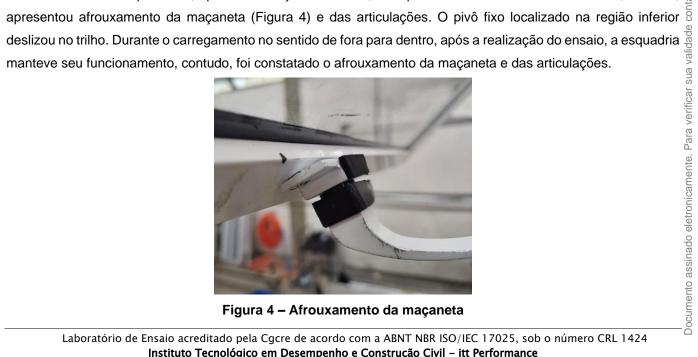
5.2.2 Resistência à flexão

O método de ensaio é apresentado no Anexo J da ABNT NBR 10821-3:2017. As folhas da esquadria são submetidas a uma força de 400 N perpendicular ao plano desta, no sentido do interior para o exterior e vice-versa.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-MECJANMAX(R)-V01 (Data da Versão do Template: 11/04/2022)


Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3590-8887 - e-mail: ittperformance@unisinos.br

assinado eletronicamente. Para verificar sua validade contate seus signatários.

		i		ATÓRIO I io Nº 596	DE ENSAIC 2/2024)	
Para o ensaio de	fora nara dentro	utiliza-s	e a folha	mais inte	erna Par	a a folha mais externa, a	anlica-se a forca no
	·	•				·	,
sentido de dentro	para iora. Durai	ne e apos	s o ensar	o, sao reç	gistradas	as ocorrências no corpo	de prova.
6. Resultados							
6.1. Resistência a	ao esforço tors	or					
Os valores dos de	slocamentos m	áximos e	residuais	encontra	ados dura	nte o ensaio estão apres	sentados na Tabela
2.							
	Tabel	a 2 – Car	ga horiz	ontal cor	n um car	nto imobilizado	
		D1	D2	D3		T	1
	Carga (N)	(mm)	(mm)	(mm)	D _{máx} (mm)	D _{res,máx (mm)} ABNT NBR 10821-2	
	0	0,0	0,0	0,0	0,0		
	250	-34,0	-23,4	-9,3	9,9	3,0	
	0 (residual)	0,4	-0,2	-1,1	0,2		
	Legenda: Dres	s,máx – def	ormação	residual	máxima p	ermitida.	
Após a realização	do ensaio de	resistênc	ia ao est	forço tors	or, foi co	nstatado o afrouxamen	to da maçaneta da
esquadria, contude	o, a esquadria r	nanteve s	eu funcio	onamento			
6.2. Arrancament	o das articulad	:ões					
	•		. to doo o	wtioloo≃a		etatada a afraculamenta	-1
				•	•	statado o afrouxamento	da maçaneta e da
articulações, contu	udo, a esquadria	a manteve	e seu fun	cionamer	ito.		
6.3. Resistência à	à flexão						
Nie aus Cala da das		,	~				
no sentido de der	ntro para fora, a	pos a rea	alização d	do ensaio	, a esqua	adria manteve seu funcio	onamento, contudo

No sentido de dentro para fora, após a realização do ensaio, a esquadria manteve seu funcionamento, contudo, apresentou afrouxamento da maçaneta (Figura 4) e das articulações. O pivô fixo localizado na região inferior 🖔

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-MECJANMAX(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

7. Observações

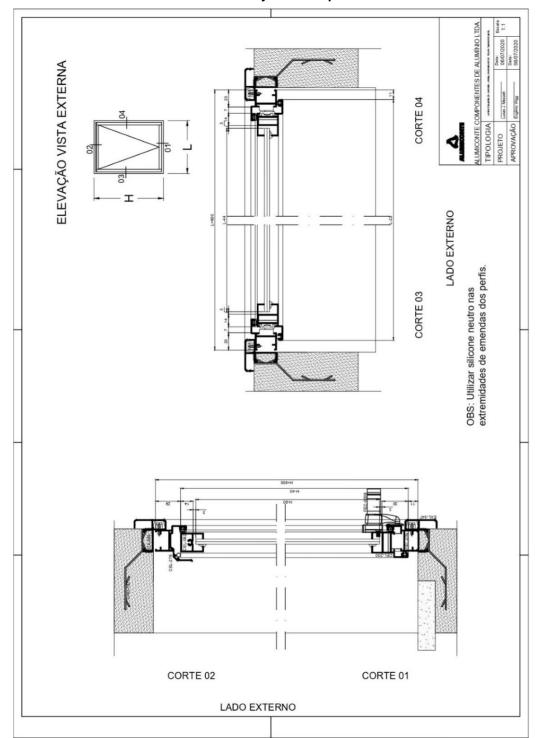
- OS RESULTADOS APRESENTADOS NESTE RELATÓRIO REFEREM-SE SOMENTE AOS ITENS ENSAIADOS.
- CONTENDO 08 PÁGINAS, O PRESENTE RELATÓRIO TÉCNICO FOI ELABORADO PELA EQUIPE TÉCNICA DO itt Performance/UNISINOS E OS RESULTADOS AQUI APRESENTADOS NÃO PODEM SER UTILIZADOS INDISCRIMINADAMENTE, SENDO VÁLIDOS SOMENTE NO ÂMBITO DESTE DOCUMENTO, SENDO VEDADA SUA REPRODUÇÃO PARCIAL. A GENERALIZAÇÃO DOS RESULTADOS PARA QUALQUER LOTE/UNIVERSO SERÁ DE RESPONSABILIDADE DO CLIENTE.
- O LABORATÓRIO NÃO FOI RESPONSÁVEL PELA AMOSTRAGEM DO(S) ITEM(NS) ENSAIADO(S), E OS RESULTADOS SE APLICAM À(S) AMOSTRA(S) CONFORME RECEBIDA(S).

8. Responsáveis pelo relatório

Nome do responsável	Função
Dr. Eng. Civil Roberto Christ	Coordenador do itt Performance CREA RS nº 182890
Dr. Eng. Civil Hinoel Zamis Ehrenbring	Responsável Técnico CREA RS nº 216147

Emitido em 16 de abril de 2024.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance


Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-MECJANMAX(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Anexo A - Projeto da esquadria

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (14BBF6A3FB19061B4AE1A4E1F32F92AA6DC46A51A37D6C094D7E83E33A30B3DA) Final do Relatório - Recomendam-se cuidados para publicação destes resultados e, quando necessário esta publicação, o relatório deve ser reproduzido na íntegra. Reprodução em partes requer aprovação escrita do laboratório. A próxima página se refere a comprovação das assinaturas digitais.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-MECJANMAX(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

PROTOCOLO DE AÇÕES

Este é um documento assinado eletronicamente pelas partes, utilizando métodos de autenticações eletrônicas que comprovam a autoria e garantem a integridade do documento em forma eletrônica. Esta forma de assinatura foi admitida pelas partes como válida e deve ser aceito pela pessoa a quem o documento for apresentado. Todo documento assinado eletronicamente possui admissibilidade e validade legal garantida pela Medida Provisória nº 2.200-2 de 24/08/2001.

Data de emissão do Protocolo: 16/04/2024

Dados do Documento

Tipo de Documento
Referência Contrato
Situação
Data da Criação

Laudo técnico
RT Perf 5962
Vigente / Ativo
16/04/2024

Validade 16/04/2024 até Indeterminado

Hash Code do Documento 14BBF6A3FB19061B4AE1A4E1F32F92AA6DC46A51A37D6C094D7E83E33A30B3DA

Assinaturas / Aprovações

Papel (parte) Responsável

Relacionamento 92.959.006/0008-85 - UNISINOS

Roberto Christ 004.127.370-27

Ação: Assinado em 16/04/2024 04:29:59 - Forma de assinatura: Usuário + Senha **IP:** 191.4.51.171

Info.Navegador Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36

Localização Não Informada

Tipo de Acesso Normal

 Representante
 CPF

 Hinoel Zamis Ehrenbring
 020.791.930-58

 Ação:
 Assinado em 16/04/2024 04:29:07 - Forma de assinatura: Usuário + Senha
 IP: 191.4.51.171

Info.Navegador Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0

Safari/537.36

Localização Não Informada

Tipo de Acesso Normal

Os serviços de assinatura digital deste portal contam com a garantia e confiabilidade da AR-QualiSign, Autoridade de Registro

vinculada à ICP-Brasil.

Validação de documento não armazenado no Portal QualiSign

Caso o documento já tenha sido excluído do Portal QualiSign, a verificação poderá ser feita conforme a seguir;

a.) Documentos assinados exclusivamente com Certificado Digital (CADES)

A verificação poderá ser realizada em

https://www.qualisign.com.br/portal/dc-validar, desde que você esteja de posse do documento original e do arquivo que contém as assinaturas (.P7S). Você também poderá fazer a validação no site do ITI – Instituto Nacional de Tecnologia da Informação através do endereço https://verificador.iti.gov.br/

b.) Documentos assinados exclusivamente com Certificado Digital (PADES)

Para documentos no formato PDF, cuja opção de assinatura tenha sido assinaturas autocontidas (PADES), a verificação poderá ser feita a partir do documento original (assinado), utilizando o Adobe Reader. Você também poderá fazer a validação no site do ITI – Instituto Nacional de Tecnologia da Informação através do endereço https://verificador.iti.gov.br/

c.) Documentos assinados exclusivamente SEM Certificado Digital ou de forma híbrida (Assinaturas COM Certificado Digital e SEM Certificado Digital, no mesmo documento)

Para documento híbrido, as assinaturas realizadas COM Certificado Digital poderão ser verificadas conforme descrito em (a) ou (b), conforme o tipo de assinatura do documento (CADES ou PADES).

A validade das assinaturas SEM Certificado Digital é garantida por este documento, assinado e certificado pela QualiSign.

Validade das Assinaturas Digitais e Eletrônicas

No âmbito legal brasileiro e em também em alguns países do Mercosul que já assinaram os acordos bilaterais, as assinaturas contidas neste documento cumprem, plenamente, os requisitos exigidos na Medida Provisória 2.200-2 de 24/08/2001, que instituiu a Infraestrutura de Chaves Públicas Brasileira - ICP-Brasil e transformou o ITI – Instituto Nacional de Tecnologia da Informação em autarquia garantidora da autenticidade, integridade, não-repúdio e irretroatividade, em relação aos signatários, nas declarações constantes nos documentos eletrônicos assinados, como segue:

- Art. 10. Consideram-se documentos públicos ou particulares, para todos os fins legais, os documentos eletrônicos de que trata esta Medida Provisória.
- § 1º. As declarações constantes dos documentos em forma eletrônica produzidos com a utilização de processo de certificação disponibilizado pela ICP-Brasil presumem-se verdadeiros em relação aos signatários, na forma do art. 131 da Lei no 3.071, de 1o de janeiro de 1916 Código Civil.
- § 2º. O disposto nesta Medida Provisória não obsta a utilização de outro meio de comprovação da autoria e integridade de documentos em forma eletrônica, inclusive os que utilizem certificados não emitidos pela ICP-Brasil, desde que admitido pelas partes como válido ou aceito pela pessoa a quem for oposto o documento.

Pelo exposto, o presente documento encontra-se devidamente assinado pelas Partes, mantendo plena validade legal e eficácia jurídica perante terceiros, em juízo ou fora dele.